

Reach for the Stars!!

An Introduction into the

Science and Sport of

Rocketry Overview

- ■Space Flight & Rockets
- ■Rocket Physics & Safety
- ■Model Rocketry
- ■Range Prep & Safety
- □LAUNCH!!

Space Flight

- Why Do It?
 - > Explore the Unknown
 - > Microgravity
 - > Communications
 - > Weather Forecasting
 - > Future Exploration
- How to get up there?

Space Flight

Space Flight

• US Launch Vehicle Example: Space Shuttle

- Complicated and costly equipment
- How do they Work?

Rocket Physics

Governing Principles

- > Newton's Three Laws
- > Energy Conservation
- > Aerodynamics + Stability
- > Propulsion
- > Vehicle Control + Safety
- Model Rocketry is just a scaled version of the Big Rockets!

Rocketry Physics

• Newton's 1st Law (Law of Inertia)

> "Objects at rest will stay at rest and objects in motion will stay in motion in a straight line unless acted on by an outside force."

Newton's 2nd Law (F=MA)

> "If an force acts on a body, the body will be accelerated; the magnitude of the accel. is proportional to the magnitude of the force, and the direction of the accel. is in the direction of the acting force."

• Newton's 3rd Law (Action-Reaction)

> "For every action there is always an opposite and equal reaction"

Energy Conservation

+ Energy In= Energy Out & Energy is just converted from one form to another

Rocketry Physics

Low Drag

No/Low Lift

Aerodynamics and Stability_D

- Frictional
- Lift Induced
- > Lift Generation
 - Lifting Accent
 - Glide Return
 - Maintain Stability

Rocketry Physics

Propulsion

- Provides the Force to Overcome Gravity and Accelerate the Vehicle
- > Engine Types & Operation
 - Liquid
 - Solid (Model Rocket Engines)

Rocketry Flight Safety

- Propellants

 - > Often Toxic
- Vehicle Control
- Environmental Pollution
 - > HAZMAT
 - > Sound
- Model Rocketry has Similar Concerns

- Scaled Versions of the Big Rockets!
- Physics are the Same
- Look into:
 - > Evolution of Model Rocketry
 - > Rocket Design and Building
 - > Safety Testing
 - > LAUNCHING!

- Amateur Rocketeers or "Basement Bombers"
- Mixed Own Fuels ,1:7 chance of Serious Injury

- Professional Rocketeers with formal training, skills, & Equip.
- Safety Proven, Commercially Manufactured Rocket Engines

- National Association of Rocketry (NAR)
- Model Rocketry Safety Code

Model Rocketry

Model Rocket Components

Model Rocketry

• Propulsion System:

Solid

Rocket

Engines

Model Rocketry

Recovery Modes/Systems

Model Rocketry

Aerodynamics & Stability Tests

Model Rocketry

Flight Phases

- Thrust Phase
- Coasting Phase
- Recovery Phase
- Touchdown

 Performance Equations allow Estimates for:

- Trajectory Path
- Altitude
- Range
- Drag
- Lift

• If interested, Information can be provided through your Teacher!

Competition Areas

- Target Landing
 - (5-50) Points for Landing Accuracy (based on distance to target)
 - (5, 10, 20, 30, 40, 50) Points for Maximum Airborne Time (top 5 positions + 5 pt minimum score)
 - (0 or 25) Points for Safe Payload Delivery
 (a raw Grade A Large hen's egg, recoverd w/o cracks)
- > Model Rocket Design, Originality, & Appearance
 - Judged at the start of the competition
 - (1-15) Points for each category

Competition Rules

- > Teams of 4-5
 - Each team will have at least
 - (1) Launch Control Officer (LCO)
 - (1) Tracking Officer (TO)
 - (2) Recovery Crew Members
- > 2 Launches per Team (A or B Engines only, C with an Egg)
- > NAR rules will be followed
- > Range Safety Officer (RSO) will carry safety keys, check air-worthyness/weights of rockets, and give launch clearance for flights.
- Observe launch boundaries at all times!

Model Rocketry

Sample Launch Range Layout

Model Rocketry

Countdown to Competition

Launching

References

- Space Mission Analysis and Design, Edited by James R. Wertz and Wiley J. Larson, 1991.
- Rocket Propulsion Elements, by George P. Sutton, 1992
- Estes: The Alpha Book of Model Rocketry, 1988
- Estes Educator: Physics and Model Rockets, by Sylvia Nolte, Edited by Thomas Beach, and Tim Van Milligan, 1992
- Basics of Model Rocketry, by Douglas R. Pratt, 1984

